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Many basic questions about the type II; factors of free groups, and more
generally of free products of cyclic groups, are still unanswered. On the
other hand the free group factors, like the hyperfinite factor, arise naturally
from a functor taking Hilbert spaces and contractions to C*-algebras and
completely positive maps. This functor is the analogue of Gaussian measure
on Hilbert space in a kind of non-commutative probability theory ([1], [2],
(3], [4], [5]) in which free products are given a treatment similar to tensor
products, i.e. to independence. One of the aims of the present paper is to
apply- these probabilistic results to free group factors.

To be more specific, here are two results we obtained in this way. By
F(N) we denote the free group with generators indexed by the natural
numbers.

1°. If G is an at most countable free product of cyclic groups, then the
Iy factors of F(N) and of G + F(N) are isomorphic.

2°. The fundamental group of the I, factor of F(N) contains the positive
rational numbers.

The circular and semicircular systems, we study, are analogues of families
of independent complex and respectively real Gaussian random variables.

1Research supported in part by a grant from the National Science Foundation.
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They provide convenient systems of generators for free group factors. Ac-
tually, the main source for our results is the recent realization ([5]) that
Gaussian random N X N matrices in the large N limit, behave like objects
in the non-commutative probabilistic context for free products. Also, con-
versely, the results we obtain here, have consequences for random matrices:
the components of the polar decomposition of a Gaussian random matrix
are asymptotically free (see Remark 2.7).

The semicircular systems are called so because of the semicircle distri-
bution of its elements. The semicircle law for the eigenvalues of random
matrices was discovered by E. Wigner ([6], [7]). In [1] we found that the
semicircle distribution is the analogue for free products of the Gaussian dis-
tribution. This coincidence was the first clue for the connection between
random matrices and free products. ’

This paper has three sections.

Section 1 is a large section of preliminaries, designed to make the paper
self-contained. ‘ :

Section 2 is devoted to results on circular and semicircular systems.
Among these we mention Propositon 2.6 concerning the polar decompo-
sition of a circular element.

Section 3 contains applications to free group factors.

1. Preliminaries

This section is devoted to preliminaries. We recall definitions and facts
from ([1], [4], [5]) and present some further definitions and general remarks
which will be used in the next sections. : _

A “non-commutative probability space” (A, p) consists of a unital algebra
A over C equipped with a state ¢ : A — C, i.e. a linear functional ¢ such
that @(1) = 1. If A is a %-algebra and p(z*) = o(z) we call (4,¢) a
#-probability space. Similarly, a *-probability space (A4,) where 4 is a
© C*-algebra and ¢ is positive, will be called a C*-probability space. Further,
a C*-probability space (4, ) with A a W*-algebra and ¢ a normal state,
will be called a W*-probability space. o

If (4, ) is a non-commutative probability space, elements of A will often
be referred to as non-commutative random variables (or simply random
variables).

1.1. DerFinITION: Let (A,¢) be a non-commutative probability space.
A family of subalgebras 1 € A, C A (v € I) is called a free family of
subalgebras if ¢(a; ...a,) = 0 whenever a; € A,jy, with ¢(j) # «(j + 1)
(1<j<n—-1)and p(a;) =0 (1 < j<n). A family of subsets (U).er is
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called free if the subalgebras A, generated by {1} UQ, form a free family
of subalgebras. A family of random variables (f.).er in A is called free if
the family of subsets ({f.}).er is free. If (4, ¢) is a *-probability space, a
family of subsets (,).er is called *-free if the family of subsets (2, U} ).ex
is free. A family of random variables (f.).er is called *-free if the family of
subsets ({f.}).er is *free.

1.2. REMARK: If (Q,).¢s is a *-free family of subsets in a C*-probability
space (respectively in a W*-probability space) then the C*-subalgebras
(respectively the W*-subalgebras) generated by {1} UQ, (« € I) form a
free family of subalgebras.

1.3. REMARK: Let (A, ¢) be a non-commutative probability space.
(i) If (A.).er is a free family of subalgebras in (4,¢) and B is the sub-
algebra generated by %JI A,, then ¢ | B is completely determined by the

"2 l AL (L € I)
(ii) If ().er is a free family of subsets in (4,¢) and if (Li)jes is a
partition of I and if X; = GL,} Q,, then (X;);es is also a free family of
t€i; .

subsets.
(iii) If (A,).er is a free family of subalgebras in (4, ¢) and if (wer)kek,
is a free family of subsets in (A,,¢ | A.), then (w.x) r)ex Where K =

11 {:} x K., is a free family of subsets in (4, ¢).
el
1.4. EXAMPLE: Let G be a discrete group which is the free product ) :I G‘

of its subgroups G, and let (L(G), ) be the von Neumann algebra gener-
ated by the left regular representation of G in £2(G) and 7 the canonical
trace state, i.e. T(T) = (T¢,€) where £(g) = 8g.. Let further L(G.) be
identified with the corresponding subalgebra in L(G). Then (L(G.)).er is
a free family of subalgebras in (L(G), 7).

1.5. Given non-commutative probability spaces (Ax,pr) (k € J) there
is a state ¢ on the free product algebra A = kzj A (amalgamation

over Cl is assumed) such that ¢ | Az = @i (the Az being canonically
identified with subalgebras of A) and such that the (Ax)res form a free
family of subalgebras in (4,¢). The state ¢ is uniquely determined by
these conditions and is called the free product of the states pi, denoted
keJ : '

If the (Ax, i) are W*-probability spaces such that the Ay are finite
W*-algebras and the p; are faithful trace states, then ¢ is a trace state
on the *-algebra A and the GNS-construction applied to (A, p) yields a
von Neumann algebra A with a normal faithful trace state ¢ which will be
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called the reduced W*-free product of the (Ay,pr). Each Ay identifies with
a von Neumann subalgebra of A so that o = @ | Ax and the A; form a
free family of subalgebras. If the Ay’s are II; factors then A is a IT; factor.

If (G.).e1 is a family of discrete groups, then the reduced W*-free product
of the (L(G,),r.) is (L(G),7) where G = & G..

1.6. DEFINITION: If (f,).er is a family of random variables in (4, ¢), let
C{{X. | ¢+ € T}) be the free algebra with unit over C and generators X,
(t€I)andlet h: C{{X, |t € I}) — A be the homomorphism such that
h(X.) = f. (¢ € I). The joint distribution of the (f,).er is the functional
g C({X, | ¢ € I}) — C defined by p = p o h. The moments of (f.).cr
are the numbers p(Y) where Y = X, X,, ... X,, is a monomial. If (f,).er
is a family of random variables in a *-probability space the distribution of
(f)eer U (f})cer will be called the *-distribution of (f.).er-

1.7. DEFINITION: If (f, n).er are random variables in (A,, ) and p, '

is their joint distribution, then pu,, is called the limit distribution of these

families as n — oo, if lim p,(a) = p(a) for every a € C{({X, |t € I}). If
. n—oo .

(fin).er are families of random variables in (A4, ,) and if I = U I, is

a partltlon of I, then the family of subsets ((f, n).¢ 1,)365 is called asymp-
totically free as n — oo if the distributions g, of (f,,).er converge to a
limit distribution g and if the family of subsets ((X,).er, ),es is free in
(CH{X. e el}),p).

1.8. REMARK: Let (4,¢), (B,¥) be two C*-probability spaces (respec-
tively W*-probability spaces) such that the GNS representations associ-
ated with ¢ and ¢ are faithful. Let further (f,),er C A and (g9.).c1 C B
be families of random variables which generate A and B as C*-algebras
(respectively as W*-algebras). If the *-distributions of (f,),ecr and (g,).er
are equal then there is an isomorphism of C*-algebras (respectively W*-
algebras) v : A — B such that p = oy and y(f.) =g, for c € I.

1.9. DEFINITION: A family of random variables (f,),er in a *-probability
space (A, ) is called a semicircular family if it is a free family, f, = f for
all « € I and the distribution of each f, is given by the semicircle law

2 1
ky - 2 k1_21/2d‘
o) /t( £2)1/2 gt

A famlly of random variables (g, ).¢r is called circular if the family (z,),¢yU
(v.).er where z, = 2~ 1/"’(g +9}), v = —i2"Y/2(g, — g*), is a semicircular
family.
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1.10. REMARK: If (f,).es is a semicircular system in the *-probability
space (4, ) and B is the subalgebra generated by the f£,’s, then ¢ | B is
completely determined and is a trace. If (A, ) is a C*-probability space or
a W*-probability space such that the GNS representation associated with
¢ is faithful, then the C*-algebra or respectively the W*-algebra generated
by the (f.).er is completely determined. In the W*-algebra case this W*-
algebra is isomorphic to a type II; factor of a free group on card I generators
and ¢ is the canonical trace. This follows from 1.3(i), the fact that a free
product of trace states is a trace state and 1.8.

1.11. REMARK: The analogue of the Gaussian functor constructed in [1]
provides a canonical model for a semicircular family. We recall only part

of the construction. Let H be a Hilbert space, TH = C1® € H®"
n>1

the full Fock space and if h € H let 4(h){ = h® & for € € TH. If
(e.).er is an orthonormal basis in H, let A be the C*-algebra generated
by the s(e,) = 1/2(€(e,) + £(e,)*), ¢ € I and let p(a) = (al,1). Then
@ is a faithful trace state and (s(e,)).er is a semicircular family. The
von Neumann algebra generated by A is isomorphic to the free group factor
on card I generators and (-1,1) is its normal trace state. Moreover, as an
algebra of operators on T H it is in standard form.

We conclude this section with some facts from [5] concerning the con-
nection between Gaussian random matrices and free random variables.

1.12. The natural framework for random matrices is the following. (X, do)
is a standard non-atomic measure space with a probability measure do and
L= ﬂ LP(X) is a x-algebra endowed with the state E : L — C given

by £ f = [5 f(s)do(s). Let further M, be the complex » x n matrices
endowed with the normalized trace 7, : M, — C (l.e. 7, = 1/n Tr). We
shall denote by e;; or e(i, j;n) when n needs to be emphasized, the n x n
matrix with zero entries except for the (7, j)-entry which is 1. The algebra
of random n X n matrices is the algebra M, = M,(L) = M, ® L and is
equipped with a trace state ¢, : M,, — C given by ¢, = 7, ® E. M, can
be naturally identified with 9, ® 1 C M, i.e. with the constant matrices

_in M,. By A, C M, we shall denote the constant diagonal matrices.

1.13. THEOREM ([5]). Let Y(s,n)= 5. a(i,j;n,5)e(i,j;n) € M, be
1<ij<n

random matrices, s € N. Assume that a(i, j;n,s) = a(j,%;n,s) and that

{Rea(i, j;n,5)|1 <i < j<n,s€N}U{Ima(j;n,s)|]l < i< j<nseN}
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are independent Gaussian random variables such that
E(a(i,jsn,s))=0 for 1<4,j<n,

E((Rea(i, j;n, 5))?) = E((Ima(i, j;n,8))%) = (20)™" for 1<i<j<n,
E((a(k,k;n,s)*)=n"' for 1<k<n.

Let further (D(j,n));jen be elements in A, such that sup ||D(j,n)|| < oo

for j € N and (D(j,n));eN has a limit distribution asnrezN—v oo. Then the

family of subsets of random variables

{({Y(s,n)}sen, {D(,n) | €N}}

is asymptotically free as n — 0o. Moreover, the limit distribution of the
family (1/2 Y (s,n))seN as n — oo Is that of a semicircular family.

-1.14. THEOREM ([5]). Let Y(s,n) = ¥ a(i,j;n,s)e(s,j;n,s) € My and

Z(s,n) = Y b(i,j;n,s)e(i,j;n) € My be random matrices, s € N. As-
sume that Ima(i, §;n,s) = 0, Reb(s, j;n,s) = 0, a(i,j;n,s) = a(j,i;n,s),
b(i)j;n;s) = _b(j’i;n)s) and that {a(ivj;n)s) | 1 < i < .7 <n s€
N} U {ib(p,¢;n,8) | 1 £ p < ¢ £ n, s € N} are independent Gaussian
random variables such that :

E(a(i,j;n,5)) = E(b(3,4;n,8)) =0 for 1<4,j<n
E((a(i, §;n,5))%) = —E((b(p, ¢;m,8))*) =n~' for 1<4,j,p,g<n
and p # q. Let further (D(j, h));jen be elements in Ay, such that

sup ||D(4,n)| < o0 .
neN

for j € N and (D(j,n))jen has a limit distribution as n — co. Then the
family of sets of random variables

{({Y(s,m)Dsen, ({Z(sm)Dsens {DG,m) 15 €NY)

is asymptotically free as n — oco. Moreover, the limit distribution of
{1/2 Y(s,n) | s € N}YU{1/2 Z(s,n) | s € N} is that of a semicircular
family. '

Note that Theorem 1.14 actually implies Theorem 1.13.
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2. Circular and Semicircular Systems

This section deals with properties of circular and semicircular systems.

2.1. ProprosITION. Let (4, ¢) be a C*-probability spéce such that p is a
faithful trace and let (f,),cr be a semicircular system in (A, p). Let further
F be the closed real linear span of the (f.).er in A. Then the following
hold:

a) F is a real Hilbert space with orthonormal basis (f,).er.
b) An orthonormal system in F is a semicircular system.

PrOOF: Since ¢ is a faithful trace, the GNS representation of the C*-
subalgebra B of A generated by the (f,),er. Hence we may apply 1.10 to
(B, ¢ | B) and~to the semicircular system in 1.11. After this identification
a) and b) become obvious. i

2.2. ProprosITION. Let (A, ) be a C*-probability space such that ¢ is a
faithful trace and let (g;)jes be a circular system in (A, p). Let further G
be the closed complex linear span of the (g;)jes in A. Then the following
hold:

a) G is a complex Hilbert space with orthonormal basis (9;)jeJ -
b) An orthonormal system in G is a circular system.

PRrOOF: Using the preceding proposition, let us show that the propositon

follows if we know that ||g|| = 1if g is circular in (4, ¢). Let z; = 271/2(g;+

g;) and y; = —i27"/(g; — ;) so that {z; | j € J}U{y; | j € T}

is semicircular. We will show first that || 3 Ajgill = (X 1A;1%)Y/? and
jeJ jeJ

3> Ajg; is circular. Note first that it is sufficient to prove this for finite
jeJ .
J. Next note that the family (e*®g;);es is *-free and that if g is circular
then e'g is also circular. Indeed, if 2-1/2(g+¢*) = z, -2~/ (g —g*) =y
then {z,y} is circular and hence {(cos )z — (sinf)y, (cosf)y + (sinf)z}
is also semicircular, since it is an orthonormal system in the Hilbert space
with basis {z,y}. Hence e*®g is circular. Thus it will be sufficient to prove
our assertion in case A; > 0 (j € J). Indeed if 3 Xjg; = 27/%(a + ib)
with a = s*, b= b* then . = Y Ajzj, y = > Ajy; and {ua,ub}, where
p=( /\f)‘l/ 2 is semicircular in view of the preceding proposition, so
that p 3~ Ajg; is circular, which implies our assertion.

The fact we just proved clearly implies a). To prove b) note that it is
sufficient to consider the case where the orthonormal system is a basis.
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Let U : G — G be the unitary mapping (g;j);jes to the given basis. It
will be sufficient to note that there is an orthogonal transformation V of
the real Hilbert space H spanned by {z; | j € J}U {y; | j € J} such that
on the complexification H +iH D G the complexification of V extends U.
Indeed the orthogonal transformation V of H extends to a trace-preserving
automorphism of the C*-algebra spanned by H and hence maps circular
system to a circular system. :

To conclude the proof let g be circular. In view of 1.10 and 1.11 we
may assume we are in the context of 1.11. Thus we may assume g =
2_3/2(f(€1) + Z(el)* -+ i[(ez) + iﬁ(eg)*). Let hy = 2—1/2(61 + iez), h, =
2-1/2(¢; —ie,), which is an orthonormal system so that 2g = £(h1)+£(h2)*.
Clearly |lg]] < 1. Conversely, let

ba=n" Ve @i +ha®h @y @b+ +hy @ ® - ® hy ® hy)

so that ||€,|| = 1, and ||2g&n — 26| — 0 showing that |ig|| > 1. O

2.3. PROPOSITION. Let (4, ) be a C*-probability space and let 1 € D C
A be a commutative -subalgebra and let (f(s));es C A be a semicircu-
lar system. Assume D and {f(s) | s € S} form a free pair of sets and
suppose p € D is a self-adjoint idempotent such that ¢(p) # 0. Then
(0(p)~Y?pf(s)p)ses is a semicircular system in (pAp, p(p) ™ | pAp) and
the pair of sets {¢(p)~*pf(s)p | s € S} and pDp is free.

ProoF: It is clearly sufficient to prove the proposition in case S is finite
and D is generated as an algebra by a finite set {p,di, ..., dn}. Passing now
to the context of 1.13 let Y (s, n) (s € S) be independent self-adjoint Gaus-
sian matrices as in 1.13 and let {p(n), d1(n),...,dm(n)} C A, be such that

p(n) = p(n)* = p(n)? and the joint distribution of {p(n),d1(n),...,dm(n)} -

converges to the joint distribution of {p,di,...,dn}. In particular p(n) is
a diagonal matrix with entries 0 and 1 and if k,, is the number of 1’s then

lim k,n~! = ¢(p). We may clearly assume that the non-zero entries of
n=-=>00
p(n) procede the zero entries. Then, leaving aside the zeros which border

the non-zero ky, x k,, matrix, the matrices (nk;*)/2p(n)Y (s, n)p(n) are ran-
dom kj, x k, matrices of the same type as Y (s,n) and p(n)d;(n) correspond
to diagonal matrices in Ag,. Therefore, since k, — 0o as n — 00, 1.13
applies to these matrices. Hence the limit distribution of
((nk;1)Y2p(n)Y (s, n)p(n))ses is that of a semicircular family and the sets
{(nk;1)/2p(n)Y (s,n)p(n) | s € N} and {p(n)d;(n) | j = 1,...,m} are
asymptotically free. Since the limit distribution of

((nk; 1) ?p(n)Y (s, n)p(n))ses U (p(m)d; (m))1igm
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is the distribution of

(2(p)~2pf(s)P)ses U (pd;)1<i<m

in (pAp, ¢(p) "1y | pAp) the assertion follows. ' O

We pass now to the study of the polar decomposition of a circular random
variable. This requires some preparation.

2.4. LEMMA. Let (A,p) be a non-commutative probability space. Let
u,v € A be invertible elements and let 1 € B C A be a subalgebra such
that the following conditions hold:

a) ({u,u™},{v,v=1}U B) is a free pair of sets in (4, ¢).

b) ¢(u) = p(u™!) = ¢(v) = p(v™!) =0

¢) @(vb) = p(bv=1) = p(vbv~1) = 0 whenever b € B and ¢(b) = 0.
Then ({uv, (uv)~1}, B) is a free pair of sets in (4, ¢).

PROOF: Let t = uv. In view of a) and b) we have that ¢(t*) = 0 if k # 0.
Thus we must show that

‘,D(botk‘bltkzbz, . ,tk”bn) =0

where k; # 0for1 < j < nandp(b,) =0for1 < p < n—1. Clearly we may
assume that either ¢(bg) = 0 or by = 1 and similarly ¢(b,) =0 or b, = 1.
Note that the monomial bot*1b1¢%2b,,...,t5b, is actually a product of
terms of the form u,u~! alternating with terms of one of the following
types v,v~1b;,vbjv™1, vb;,bjv~! (for those j such that ¢(b;) = 0). Since
all these elements have expectation equal to zero, we conclude in view of
a) that the expectation of the product is zero. O

2.5. COROLLARY. Let (A, ) be a non-commutative probability space and
suppose ¢ is a trace. Let o be an automorphism of A such that poa = ¢
and let 1 € B C A be a subalgebra such that a(b) = b for b € B. Let
further u,v € A be invertible elements such that the following conditions
are satisfied:

a) ({u,u™1}, BU{v,v™1}) is a free pair of sets in (4, ).

b) p(u) = p(u=!) =0

¢) ov) =cv wherec € C, c # 1.
Then ({uv, (uv)~1}, B) is a free pair of sets in (4, p).

Proor: If b € B, we have

p(vb) = p(a(vb)) = cp(vb)
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and hence ¢(vb) = 0. Similarly ¢(bv=1) = 0 because
p(bv™!) = pla(bv™)) = ¢ p(bv?).

Also, p(vbv~1) = ¢(b) since ¢ is a trace. Thus, the conditions in Lemma 2.4
are satisfied and the desired conclusion follows. O

2.6. PrROPOSITION. Let (M, ) be a W*-probability space such that T is
a faithful trace state. Let € M be a circular element and let ¢ = vb be
its polar decomposition. Then we have:

a) The pair (v,b) is x-free in (M, 7).

b) v is unitary and r(v¥) = 0 if k € Z\{0}

) T(b*) =2 [l k(1 —12)1/2dt ifk > 0.

ProOF: a) It will be useful to pass to a larger W*-probability space. Con-
sider the W*-probability-space (L(Z),A), where X is the canonical trace,
and let (4,¢) = (L(Z),A) * (M, 7). We shall identify M and L(Z) with
W*-subalgebras in A. Let u € L(Z) C A be the unitary corresponding to
translation by 1 € Z. There is also no loss of generality to assume that
M is generated as a W*-algebra by «. Then there is an unique automor-
phism « of (4, ¢) such that a(u) = u and a(z) = —z. Let B C A be the
*-algebra generated by b = (z*z)!/2. 1t is easily seen that (4, ¢),,u,v, B
satisfy the assumptions of Corollary 2.5 (the invertibility of v follows by
examining the circular element 1/2(£(h1) + £(h2)*)-considered in the proof
of Proposition 2.2). It follows that the pair (uv,b) is *-free.

Let us show that in order to conclude the proof of a) it suffices to prove
that z and uz have the same *-distribution. Indeed, this implies the exis-
tence of an injective weakly continuous homomorphism g : M — A such
that wo p = 7 and p(x) = uz. This, in turn, would imply that p(v) = uv
and p(b) = b and the *-freeness of (v,b) would follow from that of (uv,b).

To show that z and uz have the same *-distribution we use our results on
random matrices (Theorem 1.13). Let z, = 273/2(Y(1,n)+iY (2,n)) € M,
and let u, = ), exp(2wij/n)e(4,5;n) € A,. It follows from Theo-

1<j<n
rem 1.13 that the *-distribution of (z,, u,) converges to the *-distribution

of (z,u). Thus, the equality of the *-distribution of z and uz will follow

if we show that the x-distributions of z,, and u,z,. The random matrix
¢, is characterized by the fact that the 2n? random variables which are
the real and imaginary parts of its entries are Gaussian, independent, have
first moments equal to 0 and second moments (8n)~!. It is clear that u,z,
is a matrix with the same properties and hence that the *-distributions of
z, and u,z, are equal.
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b) As we already mentioned in the proof of a) the unitarity of v follows
by examining a concrete circular element 1/2(€(hy) + £(h2)*). The fact
that 7(v*) = 0 if k € Z\{0} is a consequence of the fact that 2™z is also
circular and hence 7(v*) = 7((e2"*%v)¥).

¢) Here again we use the concrete circular element ¢ = 1/2(¢(h1) +
£(h3)*). In 3.5 of [5] we have shown that the moments of z*z are the same
as those of the square of a semicircular element, i.e.

r((z*z)*) = % /1 t2k(1 — t?)Y 24t

-1
This gives

1
r(b”):%A 2 (1~ %)/ 24

and in view of the Stone—Weierstrass theorem this equality extends also to
the odd moments. , O
2.7. REMARK: It is not hard to derive from Proposition 2.6a) the follow-
ing fact about the polar decomposition of random matrices. If X(n) =

Y  a(i,j;n)e(i,j;n) € M, is such that the 2n? random variables
1<ij<n
Rea(i,j5;n), Ima(i, j;n) are independent, Gaussian and have first moments
equal zero and second moments equal n~1, let u,b, = X(n) be the polar
decomposition, then the pair (un,b,) is asymptotically *-free. Similarly,
consider a real matrix, i.e. Ima(é, j;n) = 0 and the n? random variables
a(i, j;n) are 'independent Gaussian and have their first two mements equal
to 0 and respectively n~*. Then again the two components of the polar
decomposition are a.symptotlcally *-free as n — oo.

‘We pass to another kind of results which can be derived from the results
on random matrices.

2.8. PROPOSITION. Let (A, ) be a C*-probability space and let D C A
be a commutative *-subalgebra. Let

Q={h(p,g;s) |1 <p<qg<N,s€SIU{f(pg;5) | 1<p<qg<N,s€S}
be a semicircular family such that the pair of sets (Q, D) is free. Further, let

f(p,p;s) = 0 and if p > q let h(p,q;8) = h(q,p;5), f(p,¢0;5) = —f(q,p;5)
and consider

k(s) = N-2 Z (2_1/2 + 6p,g(1 2—1/2))("(1”% s)+if(p,¢;9)) ® €pq
1<p,e<N

d)= 3 dp,t) @ ey

1<p<N
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in (A® My, ¢ @ 7n) where {dp,t) |1 <p< N, teT}CD. Then
(k(s))ses is a semicircular family and the pair of sets ({k(s) | s € S},
{d(t) |t € T}) is free.

ProoF: The proof is along the same lines as the other proofs based on
1.13. The *-distribution of (€, D) is approximated by that of matrices, the
matrices for Q being Gaussian random matrices like in 1.13 and the ones
for D constant diagonal matrices. Then the matrices built out of the n x n
approximants, are Nn X Nn matrices to which 1.13 applies yielding the
desired conclusion. 0

3. Factors -

This section contains some applications of circular and semicircular sys-
tems to factors.

3.1. LEMMA. Let A be a %-algebra with unit and let (wij)i<ij<n be a

system of matrix units in A with & wy; = 1. Let further Q C A be a set

which generates A as a x-algebra. Then the set 1< _U’c< wy; Qwy generates
n

wyyAwyy as a unital x-algebra. The same assertion holds for x-algebra
replaced by C*-algebra or W*-algebra.

Proor: Define O(L) = 1<'Li< wy;Quy, for any set & C A. Tt is-easily
<j.k<n
seen that
ez = (6(B))"
and

O(£1)0(Z2) D O(Z15,).

Hence if T is the semigroup generated by QUQ” and if S is the semigroup
generated by ©(QU Q*) we have 5D e(%).

Hence the #-algebra with unit generated in wy3 Awyy by O(Q) contains
@(S) + Cwjyy which spans O(A) = U)11_A’w11.

The assertions for C*-algebras and W*-algebras are immediate corollar-
ies. , O

If M is a II;-factor and @ € Ry o we denote by M aIl;j-factor isomorphic
to e(M ® B(H))e where e € M® B(H ) is a self-adjoint idempotent in the
11..-factor with trace a. If @ < 1 we may define M, to be isomorphic to
eMe withee M, e=¢" = e? and trace of e equal c.
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. Besides writing a free group as a free product, it will also be convenient
to denote by F(S) the free group with generators indexed by a set S. We
shall also sometimes write F(|S|) where |S| is the cardinal of S.

3.2. DEFINITION: A family of unitary elements (w.).er in a *-probability

space is said to have a free x-distribution if p(n(g)) = 6y, for g € F(I),
with 7 : F(I) — U(A) denoting the homomorphism such that 7(g.) = u,
tern. -
3.3. THEOREM. Let N € N and let S be a set with at least 2 elements.
We have

a) (L(F(S)*Z/NI))yn =~ L(F(|SIN2 =N +1)

b) (L(F(S))yn = LF(ISIN? =N +1))
PROOF: a) We shall realize L(F(S) * Z/N1) as a W*-algebra of A® My
where (A, phis a W*-probability space with ¢ a faithful trace and con-
taining a sufficiently large semicircular system. We shall use to this end
Proposition 2.8. Let {f(p;s) [1<p< N, s€ S} = w1 C A be a semicir-
cular system and let {g(p,¢;s) |[1<p<q¢g<N,se€ S} =wa C Abea
circular system such that the pair of sets (w1,w2) is *-free in (A, ¢). Then
L(F(S) * Z/NZ) can be identified with the W*-algebra X' generated by

k(s) = Z fps)@epm + Z (9(p,4;5) @ €p g +9(P,1;5)" @ egp) (5 € S)

1<p<N . 1<p<qg<N

and
d= Z exp(27ij/N)1 ® ejj-
152N _ S
It is easily seen that this set of generators is equivalent to
fp;s)®epp ~ 1<PpSN,s5€S5
9(p,q;s)®epy 1<p<g<N,s€S5

If g(p,q58) = v(p, ¢;8)b(p, ¢; 8) is the polar decomposition, then we get
another set of generators '

f(p; 8) ® epp 1<p<N,s€eS

o(p,q;5)®@epy 1<P<g<N,s€S
- b(p, 4;5) ® eqq 1<p<g<N,seS.
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Since the distribution of f(p;s) and b(p, q; s) are measures without atoms
(see Proposition 2.6) it follows that there are unitary elements F(p;s) and
B(p,q;s) in A, such that they generate the same W*-subalgebras as f(p; s)
and respectively b(p,¢;s) and o((F(p;9))*) = ¢((B(p,¢;8)*) = 0if h €
Z\{0}. Thus there is also the following set of generators of X:

F(p;s) ® epp 1<p<N,s€S

v(p,4;5) ® €pq 1<p<qg<N,seS

B(p,q;s) ® eqq 1<p<g<N, seSs.
Note that in view of Proposition 2.6 the family of unitary elements

I'={F(p;s) |1 <p<N, s€S}U{v(p,g;5) | 1<p<g< N, seSHU
U{B(p,¢;s)|1<p<g< N, s€S}

has a free *-distribution.

We have (L(F(S) * Z/NZ))l/N o~ ('1 ® 611)/\’(1 ® 611). Let wy; = 1®e11
and wyp = v(1,p;0) @ e1p (here 2 < p < N and 0 € S is a fixed element)
and consider the system of matrix units wpy = wi, w1y in & In view of
Lemma 3.1 we have that (1®e11)X¥(1®e11) = Y ®e;; where ) is generated
by

v = {v(1,p;0)v(p, g; s)v(1,¢;0) ' [2< p< ¢ < N, s € S\{0}JU
U{o(L,g9)o(1,4;0) ™ [ 1< g < N, s € S\{0}}U
U {v(1,p;0)v(p,g;0)v(1,¢;0) " [2< p< g < NJU
U{v(l,¢;0)B(p,g;8)v(1,g;0)" | 1<p<g< N, s€ S
U{u(1,550)F(p, spo(L,pi0) " [2< p < N, s € S}U
U{F(1;s)|s € S}.

It is easily seen that in F(T) the set v is a free set of generators for
a subgroup. Hence since T has a free x-distribution it follows that J =~
L(F(7)). Counting elements, we have |y| = N2|S|— N + 1, which gives the
desired conclusion.

b) The proof of b) is a slight modification of the proof of a). Thus
L(F(S)) can be identified with the W*-algebra R generated by

Ks)= Y f(mis)®eppt+ 3. (9(p1035) ® epg +9(p,:5)* ®egp) (€S

1<p<N 1<p<gsN

and
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h= E ja®ejj
1<5EN
where S’ = S\{o1}, f(p;s) and g(p, ¢;s) are as in the proof of a) and a is
a unitary element with a free *-distribution and such that ({a}, {w1 Uw,})
is a free pair.
An equivalent set of generators is

f(p;5) ® epp 1<p<N,ses
9(p,¢;5)@epg  1<p<qg<N,s€S
a®epp 1<p<N.

We introduce again the polar decomposition g(p, ¢; s) = v(p, ¢; 5)b(p, ¢; s)
and the unitary elements B(p,q;s), F(p,s). Thus we get another set of

generators
1<p<N,ses

1<p<¢<N,s€e8
B(p,¢;s)®eqq 1<p<g¢<N,s€8
a® ey 1<p<N.

The family of unitary elements F(p;s), v(p,¢;s), B(p,¢;5), a has a free
#-distribution. Let further o2 € S’ and §” = S'\{o2} and let wy; =
1® e, wyp = v(l,p;o3) Qe 2 < p < N), wpy = wi,Wig- Then
(1®e11)R(1®e11) =P @ e11 where P is generated by

x = {v(1,p;02)av(l,p;02)" 1 |2< p< NJU
u{a}u .
U {v(1,p;02)v(p,g;8)v(1,4;02)"' [2<p<g< N, s € S"}U
U{v(l,g;8)v(1,¢;02)"  [1< g < N, s€S"IU
U {v(1,p;02)v(p, g; 02)v(1,¢;02) " | 2<p< g S NJU
U{v(1,¢;02)B(p,g; s)v(l,g;02) ' | L<p<q¢< N, s €SV
U {o(1,p;02)F(p, )o(L,p;05) " [2< p < N, s € S'JU
U{F(1s)|s€S'})
Again, it is easy to check that these elements form a set of free generators for

a subgroup of the free group generated by the F'(p;s), v(p,¢;s), B(p,q; s)
and a. The assertion follows by counting the elements of x. 0

We have as an immediate consequence of Theorem 3.3b) the following
corollary.

F(p;5) @ epp
v(p,4;8) ® epq
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3.4. CoROLLARY. The fundamental group of L(F(N))} contains the mul-
tiplicative gorup of positive rational numbers.

3.5. COROLLARY. Let G = Lzl Z/n,Z, where I is an at most countable
set and n, > 2 for all « € I. Then we have
L(F(N)) ~ L(G * F(N)).
Proor: It follows from Theorem 3.3a) and b) that:
(L(E(N) * Z/mZ))1 jm = LAF(N)) 2= (L(FN))) y/m-

This in turn implies

L(F(N) *Z/mZ) ~ L(F(N)).
Taking free products of II;-factors we have:

L(F(N)) ~ (L(F(N)))*I > % L(F(N)*Z/n,Z) ~ L(F(N) * G).
O
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